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Any directed graph G with N vertices and J edges has an associated line-graph
L(G) where the J edges form the vertices of L(G). We show that the non-zero
eigenvalues of the adjacency matrices are the same for all graphs of such a
family Ln(G). We give necessary and sufficient conditions for a line-graph to be
quantisable and demonstrate that the spectra of associated quantum propaga-
tors follow the predictions of random matrices under very general conditions.
Line-graphs may therefore serve as models to study the semiclassical limit
(of large matrix size) of a quantum dynamics on graphs with fixed classical
behaviour.

KEY WORDS: Quantum graphs; line-graph; spectral statistics; semiclassical
limit.

1. INTRODUCTION

Spectra of quantum graphs display in general universal statistics character-
istic for ensembles of random unitary matrices. This observation by Kottos
and Smilansky (1, 2) has led to a variety of studies in this direction. (3–11) It has
became clear that the quantisation scheme of Kottos and Smilansky can
be considerably generalised to be applicable also for directed graphs
(digraphs). (12–14) One of the main points of interest is to understand under
which circumstances the quantisation of a graph generates a spectrum
which follows random matrix theory (RMT) and when to expect deviations
thereof. General statements can, however, only be made in the limit of



large matrices and we thus face the problem of constructing larger and
larger graphs representing the same classical dynamics at least in the limit
of infinite network size. We will offer a simple and straightforward way to
define such families of graphs in this paper.

We thereby consider families of graphs generated from an arbitrary
initial graph by using the concept of line-graphs (15, 16) (also called edge-
graphs). Consider any initial directed graph G with N vertices and J bonds
(edges). The line-graph L(G) obtained from G consists of J vertices which
are the edges of its ancestor G. Iterating this procedure we construct an
infinite family of digraphs Ln(G) with in general increasing number of ver-
tices. We will show that all graphs in a given family defined in this way
have the same topological and metric properties. In particular, the sets of
periodic orbits and the non-zero eigenvalues of the adjacency and transi-
tion matrices are identical for digraphs of such a family. We will give
necessary and sufficient conditions for a line-graph to be quantisable.

Line-graph families thus form a set of graphs whose size increases with
n but whose ‘‘classical’’ dynamics is fixed. The semiclassical limit of the
system is then obtained by increasing the index n. The entire family of
graphs, corresponding to the same classical dynamics, is uniquely deter-
mined by a given initial graph. This approach to the semiclassical limit for
quantum graphs offers an alternative to the previous method based on
transition matrices representing Markov chains associated with certain
piecewise linear 1D dynamical systems. (14)

Our paper is organized as follows. In Section 2 we recall the definition
of a line-graph and present an example of a family of digraphs. Sections 3
and 4 contain the main results of this work: a proof that all graphs belong-
ing to a given family of line-graphs represent the same dynamics and con-
ditions for the quantisability of line-graphs. Section 5 is devoted to
examples of quantisable line-graph families. We analyze in particular the
statistical properties of the spectra of the unitary matrices obtained when
quantising the graph. Concluding remarks are presented in Section 6.

2. LINE-GRAPHS-DEFINITIONS AND BASIC PROPERTIES

Consider a directed graph G with N vertices and J edges (called also
bonds or arcs). We denote the set of vertices V(G)={v1,..., vN} and the set
of edges by E(G)={(vivj) : G has an edge leading from vi to vj}. To sim-
plify the notation, we will only consider graphs with at most one edge
going from a vertex vi to a vertex vj. All the results in this paper apply,
however, also for directed multi-graphs G, i.e., for graphs with two or more
edges connecting two vertices in the same direction. We will use the
ordered pair (ij) to represent a directed edge. A digraph G may have loops,
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i.e., edges starting and ending at the same vertex. A line-graph L(G) is
constructed from a graph G by considering the edges as vertices, that is,

V(L(G))=E(G), (1)

and vertices in L(G) are adjacent if the edges in G are. It is clear from the
definition that L(G) does not have multi-edges even if G does; one obtains

E(L(G))={((ij), (jk)) : (ij) ¥ E(G), (jk) ¥ E(G)}. (2)

We will be interested in families of digraphs obtained from G by
iterating the line-graph procedure. The nth generation line-graph Ln(G) of
G is thereby defined as Ln(G)=L(Ln − 1(G)). We will call the graph Ln − 1(G)
the ancestor of the line-graph Ln(G) and G the initial graph of the family.

In what follows, we will need the set of vertices which can be reached
from a vertex vi in n steps. We define the n-step out-neighbourhood of vi as

N (n)
+ (vi)={vj ¥ V(G) : vj can be reached from vi in n steps}; (3)

equivalently, we define the n-step in-neighbourhood of vi as

N (n)
− (vi)={vj ¥ V(G) : vi can be reached from vj in n steps}. (4)

The cardinality (i.e., the number of elements) of N (1)
± (vi) is often called

the out/in-degree, d ±(vi), of vi corresponding to the number of vertices
adjacent to vi with respect to outgoing or incoming edges.

The topology of a digraph G is most conveniently described in terms
of its connectivity or adjacency matrix AG of size N with

AG
ij =˛1 (ij) ¥ E(G)

0 (ij) ¨ E(G)
i, j=1 · · · N. (5)

The degree of a vertex vi is then given as

d+(vi)= C
N

j=1
AG

ij and d−(vj)= C
N

i=1
AG

ij . (6)

The adjacency matrix of the line-graph L(G) of G may be expressed as

AL(G)
ij, kl =AG

ij djk AG
kl . (7)

In fact if we define AL(G) as the adjacency matrix of dimension J including
only the relevant index pairs (ij), (kl) ¥ E(G) then AL(G)

ij, kl =djk.

Families of Line-Graphs and Their Quantization 1333



A stochastic Markov-process on the graph G is defined in terms of a
transition matrix TG with TG

ij \ 0 representing the probability of going
from vertices i to j. We demand that TG has the same zero-pattern as AG,
that is AG

ij ] 0 iff TG
ij ] 0 for all i, j=1,..., N; furthermore stochasticity of

TG implies that ;j TG
ij =1. We define the transition matrix TL(G) of the

stochastic process induced by TG on the line-graph of G by

TL(G)
ij, kl =AG

ij djk TG
kl. (8)

It is obvious from the definition that TL(G) is a stochastic matrix which has
the same zero-pattern as AL(G).

Before moving on to general results on line-graph families, we will
discuss a particular example to see how this construction works. Consider
first a directed cycle digraph CM (see Fig. 1) consisting of M vertices con-
nected by M bonds. Such a graph is strongly connected, that is, there exists
at least one directed path leading from a vertex vi to vj for all i, j=1,..., M.
The line-graph L(CM) is isomorphic to CM (see Fig. 1), so all cycles CM are
fixed points of the line-graph construction, L(CM)=CM.

Let us discuss next a family of digraphs generated by the initial graph
F defined as

V(F)={v1, v2}, E(F)={(v1v1), (v1v2), (v2v1)}={(11), (12), (21)} ·
(9)

Fig. 2 shows the first four graphs of this family. Their adjacency matrices
are

CF=R1 1
1 0

S , CL(F)=R1 1 ·
· · 1
1 1 ·

S , CL2(F)=R
1 1 · · ·
· · 1 · ·
· · · 1 1
1 1 · · ·
· · 1 · ·

S ,

CL3(F)=R
1 1 · · · · · ·
· · 1 · · · · ·
· · · 1 1 · · ·
· · · · · 1 1 ·
· · · · · · · 1
1 1 · · · · · ·
· · 1 · · · · ·
· · · 1 1 · · ·

S ;

(10)
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Fig. 1. Directed cycle digraph CM, its line-graph L(CM) is isomorphic to it.

the dots represent here entries being equal to zero. To introduce a stochas-
tic process on F we may choose equal probabilities of staying at vertex 1
and of going from 1 to 2. This corresponds to the transition matrix

TF=
1
2
R1 1

2 0
S. (11)

The transition matrices TLn(F) can be obtained from ALn(F) by replacing 1’s
by 1

2’s in all rows in which there are two entries equal to unity. The resulting
matrices are stochastic. Let NG denote the number of vertices of a digraph G.
Then the numbers of vertices of the digraphs Ln(F) fulfill the Fibonacci
relation

NLn(F)=NLn − 1(F)+NLn − 2(F), (12)

for n > 1 with NF=2 and NL(F)=3.

Fig. 2. Fibonacci family of line-graphs; the initial graph F, and next three members of the
line-graph family consisting of 2, 3, 5 and 8 vertices, respectively, are shown.
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3. LINE-GRAPH FAMILIES Ln(G)–STOCHASTIC DYNAMICS

We shall start this section by stating basic properties of the line-
digraph construction. If G is a strongly connected digraph not isomorphic
to a cycle, then the number of its bonds is larger than the number of its
vertices, so

NL(G) > NG . (13)

Observe that L(G) is also a strongly connected digraph different from a
cycle. The above statements allow us to draw an important conclusion:

Corollary 1. For any strongly connected digraph G, not isomorphic
to a cycle, its line-graph family Ln(G) contains infinite number of different
digraphs and

lim
n Q .

NLn(G)=. . (14)

In the following we analyze topological and dynamical properties of
line-graph families Ln(G) with associate stochastic Markov processes. We
start by introducing periodic orbits on a digraph.

Definition 2. A sequence of p vertices c=vi1
vi2

· · · vip
such, that

vij
¥ V(G), j=1 · · · p and (vij

vij+1
) ¥ E(G), j=1 · · · p − 1, (vip

vi1
) ¥ E(G) is

called a periodic orbit of period p on the digraph G. The set of periodic
orbits on G is denoted by PO(G).

A periodic orbit is called primitive, if it is not a repetition of another
periodic orbit. It is obvious from the definition of a line-graph that there is
a one-to-one relation between periodic orbits of G and L(G), that is,
c=vi1

vi2
· · · vip

¥ PO(G) iff g=(vi1
vi2

)(vi2
vi3

) · · · (vip − 1
vip

)(vip
vi1

) ¥ PO(L(G)).
The set of periodic orbits PO(Ln(G)) is thus isomorphic to PO(G) and the
map

G: PO(G) Q PO(L(G)) (15)

between periodic orbits of G and L(G) is bijective and conserves the period
of the orbit. This implies that the topological entropy measuring the expo-
nential of growth of the number of periodic orbits with their period p is the
same for all generations of the line-graph family. The four graphs pre-
sented in Fig. 2 may serve as an example. All the graphs Ln(F) have only
one primitive orbit of periods one to four.
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Next, we define the stability factor or amplitude of a periodic orbit,
c=vi1

vi2
· · · vip

¥ PO(G) of a graph G with associated stochastic process TG

as

aG
c =TG

i1i2
· TG

i2i3
· · · · · TG

ipi1
. (16)

The amplitude aG
c is the probability of staying on the orbit c after p itera-

tions of the stochastic process, where p is the period of c. One obtains for
the stability factor of periodic orbits on the line-graph

aL(G)
G(c) =TL(G)

i1i2, i2i3
· TL(G)

i2i3, i3i4
· · · · · TL(G)

ipi1, i1i2

=AG
i1i2

TG
i2i3

· AG
i2i3

TG
i3i4

· · · · · AG
ipi1

TG
i1i2

=aG
c , (17)

and the last identity follows from

AG
ij · TG

ij =TG
ij . (18)

We thus obtain that the mapping G leaves the stability factors of periodic
orbits invariant, that is,

aL(G)
G(c) =aG

c . (19)

The observations made above on the invariance of topological and
dynamical properties under the line-graph construction can be put in a
more general form. The topological entropy of a graph may be determined
by the logarithm of the largest modulus of eigenvalue of the adjacency matrix
of the graph. Denoting the characteristic polynomial of the adjacency
matrix by

PG(l)=det(AG − l1) (20)

one obtains:

Theorem 3. The spectrum of the adjacency matrix of the line-
graph, AL(G), is identical to the spectrum of AG and an appropriate number
of eigenvalues equal to zero, that is,

PL(G)(l)=PG(l) · (−l)NL(G) − NG . (21)

Proof. We start by the following lemma.

Lemma 4. The traces of powers of the adjacency matrix of a line-
graph, AL(G), are equal to the trace of the same power of AG, that is,

Tr(AL(G))n=Tr(AG)n for all n. (22)
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Since all entries of any adjacency matrix are equal to 0 or to 1 we have
AG

ij · AG
ij =AG

ij . One thus obtains

Tr(AL(G))n= C
(i1j1)(i2j2) · · · (injn) ¥ E(G)

AL(G)
i1j1, i2j2

AL(G)
i2j2, i3j3

· · · AL(G)
injn, i1j1

= C
i1 · · · inj1 · · · jn ¥ V(G)

(AG
i1j1

dj1i2
AG

i2j2
)(AG

i2j2
dj2i3

AG
i3j3

) · · · (AG
injn

djni1
AG

i1j1
)

= C
i1 · · · in ¥ V(G)

AG
i1i2

AG
i2i3

AG
i3i4

· · · AG
ini1

=Tr(AG)n. (23)

Let yk denote the coefficients of the characteristic polynomial of AG in the
descending order

PG(l)=(−l)NG − y1(−l)NG − 1+y2(−l)NG − 2 − · · · (−1)NG yNG
. (24)

By means of the Newton formulas the coefficients yk may be expressed in
terms of the traces Dn :=Tr(AG)n as (17)

yk=
1
k!
:
D1 1 0 · · · 0
D2 D1 2 · · · 0
D3 D2 D1 · · · 0
x x x x x

Dk Dk − 1 Dk − 2 · · · D1

: . (25)

Lemma 4 shows that the first NG coefficients of the polynomial PL(G) in
front of the largest powers of l are equal to those of PG. The rest of the
coefficients of PL(G) vanish, the characteristic polynomials of AL(G) and AG

differ thus only by a factor (−l)NL(G) − NG; this completes the proof of the
Theorem 3.

A relation similar to (20) holds for the characteristic polynomial of TG

RG(l)=det(TG − l1). (26)

One obtains:

Theorem 5. The spectrum of the transition matrix of a line-graph,
TL(G) consists of the spectrum of TG and an appropriate number of eigen-
values equal to zero, so

RL(G)(l)=RG(l) · (−l)NL(G) − NG. (27)
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Proof is analogous to this of the Theorem 3, since a lemma equivalent
to the Lemma 4 holds:

Lemma 6. Traces of any power of the transition matrix of a line-
graph TL(G) are equal to the trace of the same power of TG, that is

Tr(TL(G))n=Tr(TG)n. (28)

The derivation follows the arguments in the proof of Lemma 4 using
the property (18) instead.

Theorem 5 demonstrates that the stochastic dynamics on the line-
graph L(G) is equivalent to the original Markov process on G. We would
therefore expect that dynamical quantities like the metric entropy of the
stochastic process are invariant under the line-graph iteration as well. The
metric entropy depends on the choice of the invariant measure, so we need
to consider invariant measures first. The action of TG on left vectors
represents the evolution of measures. One obtains

Lemma 7. If ri is a left eigenvector of TG corresponding to the
eigenvalue l, then (riT

G
ij ) is the left eigenvector of TL(G) to the same

eigenvalue.

Proof. Let us calculate

C
(ij) ¥ E(G)

(riT
G
ij ) TL(G)

ij, kl = C
i, j ¥ V(G)

riT
G
ij A

G
ij djkTG

kl= C
i ¥ V(G)

riT
G
ikTG

kl=l(rkTG
kl),
(29)

where we have used (18) and the fact that ri is the left eigenvector of TG,

C
i ¥ V(G)

riT
G
ij =lrj. (30)

The invariant measures of a Markov chain on G is given by the left
eigenvectors of TG with eigenvalue 1. According to Lemma 7 each invariant
measure of TG defines the corresponding invariant measure of TL(G).
Assuming that rG is an invariant measure of TG, the metric entropy of the
corresponding Markov process (18) reads

HG
metric=− C

i ¥ V(G)
rG

i C
j ¥ V(G)

TG
ij ln TG

ij . (31)
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The metric entropy of the Markov process on L(G) with respect to the
corresponding invariant measure rL(G)

ij =rG
i TG

ij is then given as (see
Lemma 7)

HL(G)
metric=− C

(ij) ¥ E(G)
rL(G)

ij C
(kl) ¥ E(G)

TL(G)
ij, kl ln TL(G)

ij, kl

=− C
ijkl ¥ V(G)

rG
i TG

ij A
G
ij djkTG

kl ln AG
ij djkTG

kl

=− C
ijl ¥ V(G)

rG
i TG

ij T
G
jl (ln AG

ij +ln TG
jl )=− C

jl ¥ V(G)
rG

j TG
jl ln TG

jl . (32)

We thus find that the metric entropy of a stochastic process defined by
TL(G) based on the invariant measure rL(G) is indeed identical to the metric
entropy of a process TG based on the invariant measure rG, that is,

HL(G)
metric=HG

metric. (33)

The results stated in this section show that the topological and metric
properties of the dynamics on a given graph G and the corresponding line-
graph L(G) are identical. In fact we have proven by recurrence that all
digraphs in the family Ln(G) have the same set of periodic orbits, the same
non-vanishing spectrum of the adjacency matrices ALn(G) and of the transition
matrices TLn(G), as well as the same topological and metric entropy.

4. THE QUANTISATION OF LINE-GRAPH FAMILIES

4.1. Unitary Propagation on Graphs

So far we have considered stochastic processes on digraphs defined by
a transition matrix TG. Recently, Kottos and Smilansky (1) proposed to
study unitary propagation on graphs and to link the spectral properties of
the unitary dynamics to an underlying Markov process on this graph.
Generalising their approach we may consider the following definition of
quantising a Markov chain:

Definition 8

(a) A digraph G is called quantisable if there exists a unitary matrix
UG with the same zero-pattern as the adjacency matrix AG.

(b) A stochastic transition matrix TG is called quantisable if there
exists a unitary matrix UG such that

TG
ij =|UG

ij |
2. (34)
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The matrix UG represents a one-step propagator, which describes
unitary time evolution in a finite Hilbert space of dimension NG. Note that
not all stochastic matrices TG can be quantised in the sense described
above. The stochastic matrices, for which a unitary matrix exists fulfilling
Eq. (34) are called unistochastic. (19) The matrix TG in (34) is by construction
bistochastic, that is, the sum over the matrix elements in each row and
column of TG equals 1. However, for NG > 2 bistochasticity is not a suffi-
cient condition for unistochasticity (see, e.g., refs. 19–21 and 14), and it is
in general hard to decide whether a given bistochastic matrix is unistochas-
tic or not. Even necessary and sufficient conditions for the pattern of
unitary matrices are not known, see ref. 22 for some necessary conditions.

On the other hand, the quantisation of a unistochastic matrix TG is
not unique. For every matrix UG fulfilling (34), the set of unitary matrices
of the form

ŨG=D1UGD2, (35)

with D1 and D2 being diagonal unitary matrices, are also quantisations
of TG. One can therefore introduce a 2NG − 1 parameter family of unitary
matrices corresponding to the same classical stochastic process defined
by TG. By choosing the phases in D1 and D2 randomly with respect to the
uniform measure on the interval [0, 2p) one can define an ensemble of
unitary matrices linked to the transition matrix TG as proposed in ref. 13,
also called a unitary stochastic ensemble (USE) of TG. The transition
matrix TG is stochastic and its largest eigenvalue l1 is equal to unity. (19)

It was conjectured in ref. 13 that the statistical properties of spectra of
unitary matrices in a given USE after ensemble average are linked to the
spectral gap DTG=1 − |l2 | of TG, where l2 is the subleading eigenvalue
of TG. The conjecture in ref. 13 implies in particular the following

Conjecture 9. Let T(N) be a family of unistochastic transition
matrices of dimension N; the corresponding unitary stochastic ensembles
follow random matrix theory (RMT) in the limit N Q . if the spectral gap
is bounded from below, that is, if DT(N) \ c > 0 in this limit.

It has been shown in the last section, that the spectral gap remains
constant for stochastic processes generated by line-graph iterations. The
conjecture thus implies that unistochastic ensembles derived from quantis-
able line-graph families Ln(G) follow RMT in the limit n Q . (assuming G
is a strongly connected digraph not isomorphic to a cycle) if the spectral
gap of the Markov chain on the initial graph DT(G) > 0. As mentioned
above not all stochastic processes on digraphs are quantisable in the sense
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above and it is in general hard to decide whether a given bistochastic tran-
sition matrix is unistochastic or not or even whether a given graph G is
quantisable. Surprisingly, life becomes much easier when considering line-
graphs. Necessary and sufficient conditions for the quantisability of Ln(G)
can actually be given and will be discussed in the next section.

4.2. Quantisable Line-Graphs

We start by giving an answer to the question whether a given graph H
is the line-graph of another graph. The following are necessary and suffi-
cient conditions given by Richards, (23) see ref. 24 for a comprehensive
overview over other equivalent statements.

Theorem 10. Let H be a digraph and AH be its adjacency matrix.
The following statements are equivalent:

(i) H is a line-digraph;
(ii) any two rows of AH are either identical or orthogonal;

(iii) any two columns of AH are either identical or orthogonal.

It should be noted that a line-graph does in general not specify
uniquely its ancestor graph. This non-uniqueness is caused by sources and
sinks, (that is vertices with only outgoing or incoming edges) or isolated
vertices in the line-graph, see ref. 24. This problem is less relevant for
quantisable line-graphs as will be shown later, we will therefore not
consider it here further.

An immediate consequence of Theorem 10 is the following necessary
and sufficient condition for a line-graph to be quantisable:

Corollary 11. Let H be a digraph with N vertices and AH be its
adjacency matrix. Then H is a quantisable line-digraph iff there exist per-
mutation matrices P and Q such that PAHQ is block-diagonal of the form

PAHQ=R
Jn1

Jn2

· · ·
Jnk

S (36)

where Jn is the square matrix of dimension n containing only 1’s and

C
k

i=1
ni=N. (37)
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Proof. Follows directly from Theorem 10. The identical rows (and
columns) of AH form submatrices of AH containing only 1’s. These subma-
trices have to be square matrices in order to have the same pattern as a
unitary matrix. The last condition (37) follows from the fact that a unitary
matrix can not have a zero row or column.

The number of submatrices k in (36) is equal to the number of vertices
in the ancestor graph and ni corresponds to the number of incoming and
outgoing edges at a vertex vi of the ancestor graph. The Corollary 11 is
thus equivalent to the statement

Corollary 12. A graph G has a quantisable line-graph L(G) iff for
every vertex vi in V(G) the number of outgoing edges equals the number of
incoming edges, that is, d+(vi)=d−(vi).

The number of incoming and outgoing edges may of course vary from
vertex to vertex.

Quantisability of a line-graph turns out to be a rather strong condi-
tion. Disregarding possible isolated vertices in the ancestor graph, we can
make the following statements about the ancestor graph of a quantisable
line-graph:

Corollary 13. Let H be a quantisable line-graph and G the ancestor
of H; this implies

(i) the ancestor graph G is uniquely defined by H up to graph iso-
morphism;

(ii) G is either strongly connected or disconnected; if it is discon-
nected, then each of the disconnected components is strongly connected.

4.3. Quantisable Families of Line-Graphs

We now turn to the question, whether a given graph G has a quantis-
able nth generation line-graph Ln(G). A necessary and sufficient condition
is given by the following theorem

Theorem 14. A graph G has a quantisable nth generation line-
graph Ln(G) iff for every vertex vi ¥ V(G) and every vj ¥ N (n − 1)

+ (vi), that is,
for every vertex vj which can be reached from vi in n − 1 steps, one finds

d−(vi)=d+(vj). (38)

Equivalently, one can write the condition above in terms of the
(n − 1)-step in-neighbourhood N (n − 1)

− of the vertices of G.
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Proof. Let us start by giving the condition for the (n+1)-st genera-
tion line-graph to be quantisable; from Corollary 12 one obtains that
Ln+1(G) is quantisable, iff every vertex v (n)

i ¥ V(Ln(G)) has as many incom-
ing as outgoing edges. We may thus write

C
j

ALn(G)
ji =C

k
ALn(G)

ik for all i, (39)

and the sum runs over all possible vertices of Ln(G). A vertex
v (n)

i ¥ V(Ln(G)) can be written in terms of n-step paths in the original graph
G, that is,

v (n)
i — (vi0

, vi1
,..., vin

) for a set of vertices with AG
i0i1

· AG
i1i2

· · · AG
in − 1in

] 0
(40)

We now write Eq. (39) in the form

C
i

ALn(G)
ij =C

i0

ALn(G)
i0 · · · in, i1 · · · in+1

=AG
i1i2

· AG
i2i3

· · · · · AG
inin+1

C
i0

AG
i0i1

(41)

and

C
i

ALn(G)
ji = C

in+2

ALn(G)
i1 · · · in+1, i2 · · · in+2

=AG
i1i2

· AG
i2i3

· · · · · AG
inin+1

C
in+2

AG
in+1in+2

. (42)

We thus obtain the condition

d−(vi1
)= C

N

i=1
AG

ii1
= C

N

i=1
AG

in+1i=d+(vin+1
) if AG

i1i2
· AG

i2i3
· · · · · AG

inin+1
] 0,
(43)

that is, if there exists a path to reach vin+1
from vi1

in n steps; this completes
the proof of the theorem.

Equivalently, Theorem 14 may be expressed as

Corollary 15. A graph G with adjacency matrix AG has a quantis-
able nth generation line-graph Ln(G) iff for every pair of vertices
vi, vj ¥ V(G)

d−(vi)=d+(vj) whenever ((AG)n − 1)ij ] 0, (44)

where (AG)n − 1 denotes the (n − 1)st power of the matrix AG.
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It is clear from the conditions above that more and more restrictions
are imposed on G if one wants to construct families of line-graphs with an
increasing number of quantisable line-graph generations. In the following
we give a couple of general statements on line-graph families. We assume
here that the ancestor graph G is connected; a generalisation to discon-
nected line-graphs is obvious in the light of Corollary 13.

Corollary 16. Let G be a digraph and Ln(G) its family of line-
graphs;

(i) Ln(G) is quantisable for all n iff G is regular, that is, iff for every
pair of vertices vi, vj ¥ V(G), d+(vi)=d+(vj)=d−(vi)=d−(vj).

(ii) Let G be a graph with a primitive adjacency matrix AG, that is,
there exists an integer k such that (AG)k has all matrix elements strictly
positive. Then Ln(G) is quantisable for n \ k iff G is regular.

(iii) A graph of order N is called bipartite, denoted KN1, N2
, if there

exist two distinct sets of vertices V1 and V2 with N1 and N2 elements,
respectively, N1+N2=N, such that every vertex in V1 is connected to every
vertex in V2 but not to any vertex in V1 and vice versa. For N1 ] N2 we
have: A line-graph Ln(KN1, N2

) is quantisable iff n is an odd integer.

(iv) An r-partite graph KN1, N2,..., Nr
is defined in analogy to a bipartite

graph. For r \ 3 and whenever at least two of the r vertex sets contain a
different number of vertices one obtains: the line-graph generations are
quantisable for n=1 only.

(v) The first generation line-graph of an undirected graph without
isolated vertices is quantisable.

The above list is only a small selection of possible conclusions follow-
ing directly from Theorem 14 for some important classes of graphs. Many
more could be formulated here. It becomes clear from the examples that
quantisability is a very restrictive condition. Especially point 2 in
Corollary 16 is important in connection with Corollary 13. Strongly con-
nected graphs are typically primitive; only graphs with additional structure
like bipartite graphs do not fall into this class. Line-graph families with
infinitely many members being quantisable thus implies a high degree of
regularity in the graph.

In the next section we will discuss some examples of quantisable line-
graph families and study the spectral properties of matrices of the asso-
ciated unitary stochastic ensembles.
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5. EXAMPLES

5.1. De Bruijn Graph Families

The aim of this section is to present the statistical properties of
ensembles of unitary matrices corresponding to quantisable line-graph
families of regular initial graphs G. One set of such families consists of de
Bruijn graphs of Mth order. (16) They are obtained as the line-graph families
of fully connected initial digraphs KM with AKM=JM, that is,

V(KM)={1,..., M}, E(KM)={(ij) : i, j ¥ V(KM)}. (45)

The graphs KM have M vertices and M2 bonds connecting each vertex with
all other including itself, so they have M loops. The line-graph families
Ln(KM) have accordingly Mn+1 vertices and Mn+2 edges with M incoming
and outgoing edges at each vertex, that is, the Ln(KM) are all M-regular.
The family Ln(K2) are the family of binary graphs studied in ref. 12.

In the following, we will consider stochastic transition matrices TKM on
the initial graph KM with constant transition probabilities 1/M between all
vertices, that is, TKM= 1

M JM. These matrices saturate the well known van
der Waerden inequality concerning permanents of bistochastic matrices,
i.e., per(T) \ M!/MM. (19) It is easy to see that the TLn(KM) are unistochastic,
since related unitary matrices (34) may be constructed out of discrete
Fourier transforms of size M, F (M)

ml = 1
`M

e2pi ml/M. The graphs Ln(KM) have
topological entropy equal to ln M. The metric entropy of the process
defined by TLn(KM) is also equal to ln M.

The adjacency (and transition) matrices for the stochastic process on
de Bruijn graphs represent a discrete generalization of the Bernoulli shift.
Three matrices from the family Ln(K4) are depicted in Fig. 3. The non-zero
elements are marked as black squares, they are placed along four lines. In
the limit of large n the structure of the matrices approaches the graph of
the function 4x|mod 1 (Renyi map) rotated clockwise by angle p/2. Such

Fig. 3. Adjacency matrices ALn(K4) of 4th-order de Bruijn graphs generated as the line-graphs
of the fully connected graph K4, for n=1, n=2 and n=3. Nonzero entries are denoted as
black squares. The matrix size equals 16, 64, and 256 respectively.
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Fig. 4. Spectral statistics of a single unitary matrix of size N=4096 corresponding to the de
Bruijn graph L5(K4): (a) level spacing distribution P(s), (b) spectral rigidity D3(L) and
(c) spectral form factor K(y) (with Dy=0.07). CUE predictions (coinciding with numerical
data in panel (b)) are represented by dot-dashed lines.

a correspondence between digraphs and classical dynamical systems has
been recently pointed out in ref. 14.

We are interested in the spectral properties of a generic quantum
propagator ULn(KM) corresponding to the Markov process on a de Bruijn
graph. By means of the discrete Fourier transform F we constructed a
unitary propagator associated with the stochastic transition matrix TKM. By
multiplying with random diagonal unitary matrices D1 and D2 we obtain a
typical element Ũ of the ensemble (35). Fig. 4 shows the spectral statistics
received from eigenphases of a single unitary matrix of size N=4096 from
the ensemble, UL5(K4). The level spacing distribution P(s), the spectral rigi-
dity D3(L) (25) and the spectral form factor K(y) (the Fourier transform of
the two point correlation function) (26) are plotted. The statistics coincides
well with the predictions of random matrices for the Circular Unitary
Ensemble (CUE), (27) although it is only the fifth iteration of the line-graph
construction. The spectral form factor K(y) was averaged over a parameter
window Dy. We have also obtained qualitatively similar results averaging
K(y) over a unitary stochastic ensemble as defined in (35) consisting of 103

unitary matrices Ũ of size 64.

5.2. Symmetric Cycle Graph Family

Next we consider a family of quantisable line-graphs which are con-
structed from symmetric cycle digraphs. A M-symmetric cycle graph GM

is an undirected graph with M vertices placed on a circle each vertex
connected with its two neighbors only see Fig. 5. More formally,

V(GM)={1,..., M},

E(GM)={(1M), (M1)} 2 {(i i+1), (i+1 i) : i=1 · · · M − 1}.
(46)
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Fig. 5. Cycle graph family: G5 and its line-graph L(G5).

The initial digraph GM is a 2-regular graph which implies that its line-
graphs Ln(GM) are all quantisable following Corollary 16. The nth line-
graph generation has M · 2n vertices, see Fig. 5. Next, we choose a stochas-
tic process with equal probabilities, 1/2, to move from a given vertex to
one of its neighbors. The topological and metric entropies are both equal to
ln 2 in this case. The non-zero matrix elements of the adjacency matrices in
the family have the same structure for any fixed M, see Fig. 6 for the
family Ln(G5). Cycle graphs and their quantisation play an important role
in the study of Anderson-type localisation in one-dimensional diffusive
systems. A full description of localisation in terms of return probabilities
on infinite chains has been given by Schanz and Smilansky, (5) cycle graphs
have also been discussed in ref. 13 in connection with the spectral gap of
the corresponding Markov process. One finds

DTGM ’ M−2 (47)

that is, the spectral gap vanishes for large M. We may now consider two
limits: by fixing the generation n of the line-graph Ln(GM) and looking at
the limit M Q . one indeed finds deviation from RMT due to localisa-
tion; (13) we may on the other hand fix M and increase n which produces
line-graphs with an increasing number of vertices but constant spectral gap
and we expect RMT-behaviour in this limit.

Fig. 6. Structure of the adjacency matrices of line-graphs family Ln(G5) obtained from the
symmetric cycle graph G5 with n=2, n=3 and n=4 with matrix size N=20, 40, 80, respec-
tively.
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Fig. 7. As in Fig. 4 for a single random unitary matrix of size 5120 associated with the
digraph L10(G5).

This is indeed what is observed; in Fig. 7 the statistics obtained from a
quantum propagator UL10(G5), with randomly chosen phases conforms well
with the prediction of CUE.

5.3. Bipartite Graph Family Ln(K2, M)

As a last example we will have a look at bipartite digraphs KN1, N2
, see

Corollary 16(iii). In terms of its vertex and edge set, KN1, N2
is defined as

V(KN1, N2
)=V1 5 V2 , Vi={1,..., Ni},

E(KN1, N2
)={(ij), (ji) : i ¥ V1, j ¥ V2}.

(48)

A class of bipartite graphs, which has been studied recently in the context
of spectral statistics of quantum graphs are so-called star graphs K1, M

which have one central vertex and M arms. (2, 20, 13) Using the quantisation
condition employed by Kottos and Smilansky (2) leads to quantum propa-
gation with an associate transition matrix with spectral gap scaling like
DM ’ 1/M; again one finds deviations of the spectral statistics from RMT
persisting in the large M limit. By fixing M and considering the line-graph
family Ln(K1, M), which is quantisable for n odd, see Corollary 16, we can
again achieve a large matrix limit with non-vanishing spectral gap. We
indeed find convergence to the RMT - statistics to a degree very similar to
Figs. 4 and 7. We also studied bipartite graphs K2, M and its line-graphs. An
example of such a graph is plotted in Fig. 8. The graphs in the family

Fig. 8. Bipartite digraph K2, 6 — the initial digraph in the bipartite graph family Ln(K2, 6).
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Fig. 9. Structure of the adjacency matrices for line-graphs of bipartite graphs Ln(K2, 6) for
n=1 and n=3; the corresponding matrix sizes are N=24 and N=288.

Ln(K2, M) have vertices with either 2 or M outgoing edges and are again
quantisable for n odd. A unistochastic transition matrix may be con-
structed choosing probabilities 1/2 for vertices with 2 outgoing bonds and
1/M otherwise. Figure 9 shows the structure of the non-zero elements of
transition matrices for L(K2, 6) and L3(K2, 6).

The construction of a unitary quantum map may be achieved by
means of the discrete Fourier transform. As for the previous examples, the
spectral statistics of eigenphases of ULn(K2, 6) follows CUE to the same
degree as shown in Figs. 4 and 7 for n \ 5.

6. CONCLUSIONS

By constructing directed line-graphs from an arbitrary initial digraph
G one obtains a family of graphs with in general increasing number of ver-
tices but identical topological and metric properties. We showed that all
digraphs in such a family indeed have the same set of periodic orbits and
that furthermore the non-zero eigenvalues of the adjacency matrices of
graphs from the same family are identical. Next we considered stochastic
Markov processes on a digraph and defined the corresponding process on
its line-graph. We demonstrated that both processes have the same metric
entropy and the transition matrices describing the processes have the same
non-zero eigenvalues. The construction of the line-graph family is in fact a
method to translate a finite Markov processes to a larger space preserving
its topological and metric properties.

We gave necessary and sufficient conditions for a line-graph to be
quantisable and gave examples of line-graph families Ln(G) which can be
quantised for infinitely many n. The line-graph construction thus makes it
possible to consider a semiclassical limit of large matrix size for unitary
ensembles on graphs with fixed ‘‘classical,’’ i.e., stochastic dynamics. This
method complements an idea developed in a previous paper, (14) in which a
semiclassical limit was considered by looking for a specific dynamical
system associated with an initial graph.
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We would like to stress again that the problem of finding necessary
and sufficient conditions for a general bistochastic matrix T to be unis-
tochastic is still open. (21) Such conditions can, however, be given for line-
graphs and turn out to be very restrictive. One way to enlarge the number
of graph families with well defined classical limit is to consider unitary
matrices Un and associated transition matrices T (n) for which topological
and metric properties converge to fixed values in the limit of large matrix
sizes.

Quantum maps generated from Markov processes on families of line-
graphs considered here all display CUE statistics in their spectral fluctua-
tions. These results were observed for families originating from fully
connected digraphs (de Bruijn), symmetric cycles and bipartite digraphs of
the form K1, M and K2, M. This behaviour is attributed to the fact that the
spectral gap is positive and constant under the line-graph iteration in all
cases whereas the number of vertices increases with n. The results thus
confirm the Conjecture 9, which relates the size of the spectral gap of the
classical transition matrix and the spectral statistics of the associated
ensemble of random unitary matrices.
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